작성일
2024.11.19
수정일
2024.11.19
작성자
최훈혁
조회수
5

최훈혁, 이병철, 강정은 (2024). Accessibility Analysis of Cooling Centers in the Mountainous Area

최훈혁, 이병철, 강정은 (2024). Accessibility Analysis of Cooling Centers in the Mountainous Area. ACSP 2024 Annual Conference. (2024. 11. 07. - 2024. 11. 09.) 


[Abstract] 


 The heat wave has garnered less public attention due to its relatively minor physical damage compared to other natural disasters. However, with the recent exacerbation of climate change, the escalating human casualties have led to an increasing risk in urban areas(Klinenberg, 2015). One important finding of epidemiologic investigations of extreme heat-related morbidity and mortality is that poor and minority populations, located in urban neighborhoods, are disproportionately affected(Luber & McGeehin). Among the vulnerable groups, the elderly are particularly susceptible to extreme heat. Owing to their diminished physical capacity and slower recovery, as well as a higher likelihood of cardiovascular or chronic diseases, they face a surging risk of heat-related illnesses during periods of extreme heat(Epstein & Yanovich, 2019). The local governments are developing or implementing response measures to mitigate the adverse effects of extreme heat, among them cooling centers are the representative measure. 


 Although cooling center is the most representative extreme heat policy for extreme heat, research on whether it is effectively designated and operated, as well as its current status and accessibility, is lacking. 


 Accordingly, the study analyzes the service area in Busan Metropolitan City, situated in the mountainous terrain of South Korea. The study collected contour data, road centerline data, and location of cooling centers via open API. Subsequently, the research calculated the service area considering slope using ArcGIS Pro 3.0. Comparing to previous research, the study adjusted walking speeds to 1.3367m/s for general adults and 0.9416m/s for the elderly by applying the method proposed by Satoh et al. (2006) due to considering the slope and the walking speed of elderly more meticulously. Additionally, reflecting extreme heat as a natural disaster, the study sets appropriate approach time to the cooling centers at 7.5 minutes, based on evacuation times in South Korea ranging from 5 to 10 minutes. Afterwards, the study conducted an analysis of Spatial Autocorrelation between the service area ratios of cooling center and the natural logarithm of vulnerability variables. 


 According to the result, a total of 1440 cooling centers are operational during nighttime hours, with 891 of these equipped with air conditioner. The service area of cooling centers based on the walking speed of adults/elderly individuals is 60.19 km2/42.56 km2, respectively. Also, the service area ratio of cooling centers in the downtown is high, while the outskirts is low. According to the spatial autocorrelation analysis, the placement of cooling centers appears to be well-established for traditional vulnerable groups however, it is questionable to consider that cooling centers have been adequately positioned to address the needs of the elderly population. In conclusion, it appears challenging to provide effective cooling centers for heat-vulnerable populations in Busan Metropolitan City, as only about 62% of the designated cooling centers are equipped with air conditioning and theoretically capable of nighttime operation. Therefore, it is necessary to implement nighttime heatwave measures in vulnerable communities by providing incentives or financial support for nighttime operation of public facilities. 


 While the spatial placement of cooling centers considered socio-economic vulnerable groups, doubts linger regarding whether sufficient consideration was given to the elderly population. In future designations of cooling centers, it is imperative not to simply designate more centers in areas with low service area ratios, but rather to comprehensively consider factors such as age, economic status, terrain slope, etc., to designate additional cooling centers. 


키워드 : Extreme Heat, Cooling Center, Service Area, Vulnerable Populations, Climate Change Adaptation 


사사 : 스마트시티, 기후변화특성화대학원사업

첨부파일
첨부파일이(가) 없습니다.
다음글
이정민, 강정은 (2024). 목조 건조물 문화유산의 기후변화 잠재적 영향 지역 분석
최훈혁 2024-11-19 18:07:12.98
이전글
이지윤, 황원실, 이정민, 강정은 (2024). Measurement of Urban Climate Resilience of Heat Wave
최훈혁 2024-11-19 17:01:22.203
RSS 2.0 109
게시물 검색
학회발표
번호 제목 작성자 작성일 첨부파일 조회수
109 동아현, 이병철, 최훈혁, 강정은 (2024). Analyzing the Impact of Disaster Resilience and Disaster Perception on Li 최훈혁 2024.11.19 0 6
108 이병철, 최훈혁, 강정은 (2024). 연안 지역 유형화를 통한 연안통합관리계획의 방향성 제고 최훈혁 2024.11.19 0 6
107 이지윤, 박민영, 강정은 (2024). 폭염 기후탄력성 영향요인 분석: 4Rs를 기반으로 최훈혁 2024.11.19 0 4
106 이정민, 강정은 (2024). 목조 건조물 문화유산의 기후변화 잠재적 영향 지역 분석 최훈혁 2024.11.19 0 4
105 최훈혁, 이병철, 강정은 (2024). Accessibility Analysis of Cooling Centers in the Mountainous Area 최훈혁 2024.11.19 0 5
104 이지윤, 황원실, 이정민, 강정은 (2024). Measurement of Urban Climate Resilience of Heat Wave 최훈혁 2024.11.19 0 11
103 이지윤, 강정은 (2024). 폭염 도시기후탄력성 측정에 관한 연구 최훈혁 2024.11.19 0 2
102 동아현, 강정은 (2024). 지역사회의 재난회복력과 개인의 재난인식이 삶의 만족에 미치는 영향 분석 최훈혁 2024.06.05 0 37
101 최지윤, 강정은 (2024). 아동친화시설의 공간 접근도를 이용한 공급 적절성 평가 및 영향요인 분석 최훈혁 2024.06.05 0 13
100 황희수, 강정은 (2024). 3차원 네트워크 분석에 따른 부산 N분 도시 현황 및 영향 요인 연구: 경사도를 고려하여 최훈혁 2024.06.05 0 8
99 박민영, 강정은 (2024). 가로 단위 보행만족도 예측 모델 구축 및 부산시 적용: 의 미론적 분할 알고리즘과 머신러닝을 활용하여 최훈혁 2024.06.05 0 6
98 최지윤, 박민영, 황희수, 강정은 (2024). 열환경 지수 개발을 통한 폭염이 도시민 활동에 미치는 영향 분석 최훈혁 2024.06.05 0 9
97 박민영, 강정은 (2024). 머신러닝 기반 온열질환자 발생 등급 지수 예측 최훈혁 2024.06.05 0 7
96 동아현, 강정은 (2024). 공간회귀분석을 활용한 재난피해액 영향요인 분석 : 재난회복력지수를 활용하여 최훈혁 2024.06.05 0 21
95 이지윤, 이세호, 박민영, 최지윤, 강정은 (2024). 임계치 기반의 폭염 도시기후탄력성 측정에 대한 연구 최훈혁 2024.06.05 0 13
94 최훈혁, 이병철, 강정은 (2024). 경사로를 고려한 무더위 쉼터에 대한 취약계층의 접근성 분석 - 부산광역시를 대상으로 - 최훈혁 2024.06.05 0 20
93 최지윤, 정보경, 문동빈, 강정은 (2023). 아동 놀이 및 복지시설의 공간 분포 특성 분석. 2023 한국지리정보학회 추계학술대회 최훈혁 2023.11.13 0 8
92 최훈혁, 이지윤, 이병철, 강정은(2023). 원헬스-도시계획 연계를 위한 신종 인수공통감염병 발생 위험평가 최훈혁 2023.11.13 0 35
91 황희수, 강정은(2023). 15분 도시 개념의 국내 적용 가능성 및 효과 분석. 2023 한국지리정보학회 추계학술대회 최훈혁 2023.11.13 0 41
90 박민영, 최지윤, 강정은 (2023). 머신러닝을 활용한 부산시 중심지 체계 분석과 소외지역 도출. 2023 한국지리정보학회 추계학술대회 최훈혁 2023.11.13 0 3